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Fusion reactions with n-rich nuclei

● Determination of PCN for a “cold” fusion reaction: 208Pb 

(50Ti, 2n) 256Rf

● A pilot study of 9Li + 70Zn fusion (along with an attempt 

at studying a „halo‟ nucleus fusion: 11Li + 70Zn)
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Determination of PCN for a “cold” 

fusion reaction: 208Pb (50Ti, 2n) 256Rf
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● „Hot‟ fusion involves an actinide target (Z=90 to 103) 

and a light projectile (Z=6 to 20). 

E compound nucleus ≈ 50-60 MeV. 

● „Cold‟ fusion which involves Pb or Bi target and a 

relatively heavier projectile, like Ti (Z=22). 

E compound nucleus ≈ 10-15 MeV.

Two established ways of synthesizing new 

elements
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● Cross section for producing a heavy nucleus in a heavy ion 
reaction is given by,

where  σC - Capture cross section

PCN - Probability of formation of compound nucleus

Wsur - Survival probability of the excited nucleus

● In „cold‟ fusion reactions, both the target and the projectile are of 
comparable mass (symmetric system). Therefore the Coulomb 
repulsion is significant and the chance of their coming together 
and forming a CN is a crucial factor. This makes the quantity PCN
more important for „cold‟ fusion reactions.

surCNcER WP 
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Important facts about 208Pb(50Ti,2n)256Rf 

reaction from previous studies

• This reaction produces a „cold‟ Rf with higher Wsur and decaying 

by n-evaporation rather than by SF (Ghiorso 1982).

• The σfus can only be explained by the “extra push” theory of 

Swiatecki (Clerc, Keller et al. 1984).

• This system sometimes bypasses the complete fusion path and 

„quasi-fission‟ takes place, making the calculation of σfus

complicated (Lützenkirchen, Kratz et al. 1986). 

• The values of σEVR for 1n, 2n and 3n excitations and of σc have 

been established (Heßberger 1997, Clerc, Keller et al. 1984).
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Why the need to determine PCN?

•The value of Wsur is based on Γn/Γf which in turn 

depends on the fission barrier of that reaction.

•Zubov (Zubov, 1999) calculated the Wsur using Γn/Γf

given by both Smolańczuk and Möller methods. 

•They differ by more than an order of magnitude for most 

of the heavy elements and show an opposite trend with 

increasing Z.
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σEVR =  σC *  PCN *  WSUR

Determined by 

Heßberger 

(Heßberger 

1997)

Determined by 

Clerc et al

(Clerc et al. 

1984)

Need to decide which

method, Smolańczuk or 

Möller, is the correct 

one for determination 

of WSUR.
We are trying to 

find the value of 

this quantity

Motivation behind the experiment
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Experimental setup

Collimator

50Ti beam

208Pb target

Detector A (65°)

Detector B (95°)

Detector C (35°)

Detector D (65°)

Faraday Cup

Array detectors 

(150°)
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Pb target

(500μg/cm2)

Hole target

(7.5mm 

diameter)

Au target

(235μg/cm2)

Back Front

Double sided strip detector

(DSSD)

Target ladder
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Details of the experiment run

•The 50Ti beam was used at 5 different beam energies bracketing the 

maximum of excitation function, from 253 to 230 MeV.

•A potential of +10,000V was applied to the target ladder to prevent 

detector damage due to δ–electron bombardment.

•The experiment was begun with the calibration runs done with the SF 

source 252Cf and with the impingement of 50Ti beam on 197Au target.

•First run with 50Ti beam on 208Pb target was performed in „singles‟ mode 

and rest of the runs were performed as „coincidence‟ runs.

•The target ladder as well as the detectors were moved through some angle 

intermittently from their original position to get a better angular 

distribution.
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Data analysis

• The solid angles subtended by each detector at the 

centre of the target ladder were calculated using the 

formula,

• Energy loss due to beam passing through the half-

thickness of the target was calculated using SRIM and 

UPAK softwares. 
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Pulse height defect (PHD)

• Heavily ionizing particles produce high density of electron-hole 
pairs which nullify the local charge created and therefore the „rise 
time‟ of pulse is longer than usual. 

• During this delay, electrons and holes get a chance to recombine 
making the collected charge less than created charge, shortening 
the „pulse height‟. 

• This is the Pulse Height Defect (PHD) which results in non-linear 
response of the detectors with increasing energy. 

• PHD makes the calibration of detectors necessary. The Schmitt-
Kiker-Williams (SKW) Calibration Method is widely used for 
this purpose.
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SKW Energy Calibration

a = 24.0203 / (PL-PH)

a‟ = 0.03574 / (PL-PH)

b = 89.6083 – a * PL

b‟ = 0.1370 – a‟ * PL

PL – Pulse height for light 

fragment peak

PH - Pulse height for heavy 

fragment peak

E(MeV) = [a+(a’*M(amu))]*P+[b+(b’*M(amu))]
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• Time (ns) = 0.72 * lcm* √A/E

where lcm – Distance of detector from target ladder

E – Energy of elastically scattered particle

A – Mass of the beam particle (50 amu)

Expected time (ns)

• Calibration coefficient = 

Centroid channel #

Time Calibration
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• Various parameters calculated or noted from the data, to 

be used in further data analysis were

– Grazing angle (θgr) of the reaction

– Fission fragment energy (EFF) and folding angle (θfld)

– Expected elastic scattering cross section (σelas) and 

energy of scattered fragments (Eelas)

– Beam scalar for each run

Data analysis (contd.)
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•EFF‟s and θfld were used for performing cuts 

on the E1 vs E2 spectra of „coincidence‟ 

detectors to get the number of fission fragments.

•Due to large particle flux in beam one scalar 

was recorded for every 3x109 particles hitting 

the Faraday Cup.

•The correction factors involved solid angle and 

detector acceptance correction, dead time in 

data acquisition etc.  
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Future work in analysis

• Calculating the σC considering the correction factors and in 

proper units of mbarns.

• Calculating the masses of products from energy-time correlation 

and check if they can be understood by the accepted Physics of 

the reaction. 

• Fitting the angular distribution of σC to calculated values and 

determining the contribution of Quasi-fission process to σC.

• Determination of σcomplete fusion = PCN and therefore of Wsur using 

the equation σEVR = σC * PCN * WSUR
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A pilot study of 9Li + 70Zn fusion
(along with an attempt at studying a „halo‟ 

nucleus fusion: 11Li + 70Zn) 
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Why the 9Li + 70Zn system?

• The nuclear structure and reactions of 9Li are of interest 
because

– It is the core nucleus of  2n „halo‟ nucleus 11Li and therefore 
is important in understanding of 11Li.

– 9Li is itself a very n-rich (N/Z=2) nucleus with a neutron skin.

– It is well characterized with a simple Shell Model structure, 
which is helpful in modeling its interactions.

• Fusion of 9Li has been studied at RIKEN

– with Si at 11.2-15.2 A MeV but no information on σfus or 
analysis is available.

– with 209Bi at 36 MeV but σfus was not measured.
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Why 9Li + 70Zn system? (contd.)

• 70Zn was chosen as the target because

– It is a n-rich nucleus and hence the reaction would give 

insight into the fusion of a very n-rich nucleus (N/Z=2) 

with a n-rich nucleus (N/Z=1.33).

– The predicted evaporation residues (As and Ge) are easy to 

detect by radiochemical procedures.
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Preparing Zn targets by electroplating

•Target area density ~ 0.8 -

1.1mg/cm2

•Electrolyte : ZnSO4.7H2O, 

Al2(SO4)3.18H2O, NH4Cl

•Zn wire : anode 

Al backing foil (0.54- 0.71 

mg/cm2): cathode

500 V

Cu base

Al foil

Zn wire

Polyvinyl

chimney
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Extraction of As and Ge from the irradiated 

target and their separation

• Irradiated target was dissolved in HCl, 1 ml each of the As and 

Ge standard carriers were added to it. 

• AsI3 and GeI4 were formed with Hydriodic Acid (HI) added.

• They were then extracted with Chloroform (CHCl3), AsI3 first 

and then GeI4.

• H2S passed through them, As2S3 and GeS2 formed, filtered, dried 

and counted.

• Average yields were 63% and 22% for As and Ge, respectively. 
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Experimental setup at TRIUMF

9Li beam

70Zn target

Monitor Detector (16°)

Monitor Detector (16°)

Faraday Cup
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Experiment setup details
• The experiment was done in Aug-Sept 2005 and May-June 2006. 

• 9Li beam was produced by striking a Ta metal target with proton 
beams at 50-85 μA, which was then mass-separated and 
accelerated.

• The runs with 9Li beam were done at 7 different energies from 
11.5 to 15.4 MeV.

• A shield of 5% boron-loaded paraffin was used to protect from 
delayed neutrons emitted from 9Li.

• The Faraday Cup as well as two Si detectors at +/-16.2° w.r.t. 
beam (measuring elastically scattered nuclei) were used to monitor 
the beam intensity.
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Experiment run details

• Target irradiated for 1-3 days, then γ-counted for 1 day, As and 

Ge were separated chemically and then β-counting was done on 

the precipitates.

• Efficiency of Ge γ-detector was ~80% of NaI and the Low 

Background β-counter was ~53% efficient.

• The spectra obtained from both counting were analyzed using 

DECHAOS software.

• The β-decay of As and Ge samples was followed for several days 

to establish the identity of the isotope being detected.
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Calculation of cross sections
• The production cross section (σprod) was calculated using the 

formula,

where, A – Activity

n - # of target atoms

Φ – Beam flux

λ – Decay constant

ti – Duration of irradiation

td – Time after EOB when counting was started

• The σprod was calculated based on both β and γ counting, and then 
averaged over both.

  di ttprod
een

A








1
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• The corrections applied for the calculation of production cross 
section (σprod) were

– Chemical yields of As and Ge.

– Branching ratios of isotopes involved, if any.

– Efficiencies of the two detectors.

• The fusion cross section (σfus) was calculated after correcting σprod
for unobserved products. This correction was ratio of σfus/ σAs-76 as 
computed by PACE4.13 and HIVAP codes.

Calculation of cross sections (contd.)
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Fitting data with Wong formula

• The Wong formula represents the fusion barrier as a parabola and 

in a semi classical expression, gives fusion cross section as,

where VB - height of fusion barrier (MeV)

RB - fusion radius (fm)

ħωB – barrier curvature (MeV)

• We fit data by fixing value of VB=12.5MeV and varying RB and 

ħωB. This gave RB=12.1+/-1.0fm, a value substantially larger than 

simple touching radius (7.44fm).
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Reasons to expect a large RB

• Following factors make us expect such a large value for the 

fusion radius (RB)

– 9Li has a neutron skin of thickness 0.48fm.

– Density distribution of 9Li shows a significant tail with 

ρ=10-4 nucleon/fm3 at 6.5fm.

– It is described in the Shell Model as combination of 4He, 3H 

and 2n.

– The Q value for 2n transfer (9Li + 70Zn → 7Li + 72Zn) is 

large (+8.612MeV)

• Hence this large RB value presumably reflects interaction of 

large tails of 9Li density distribution with that of 70Zn.
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Sub-barrier enhancement in σfus

•There is a sub-barrier fusion 

enhancement with 9Li which cannot 

be explained by the Coupled Channel 

calculations.

•This fact will complicate the 

explanation of the sub-barrier fusion 

enhancement seen in 11Li fusion.

•The view that enhancement is due to 

the 2 „halo‟ neutrons might not be 

true anymore as the 9Li core itself 

shows enhancement.
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Conclusions

• Fusion excitation function shows a large sub-barrier 

enhancement, not accounted for by current CC calculations.

• The large fusion radius RB=12.1fm, deduced from data-fitting by 

Wong formula, may be due to the neutron skin and extended 

neutron density distribution.

• Analysis of 11Li fusion enhancement will need to take into 

account the sub-barrier fusion enhancement due to 9Li core.
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Fusion of Halo Nucleus: 11Li + 70Zn

● Some of the n-rich nuclei, especially the lighter ones, tend to show 

a peculiar nuclear structure and hence are called „Halo nuclei‟.

● The 11Li nucleus is 9Li core with two halo neutrons and has a 

radius which is almost equal to that of 208Pb. 

208Pb

9Li core

2 “halo” neutrons

© Dr. Radhika Naik - www.radhika-naik.info



Fusion with Halo nuclei

Theoretical contradictions

•Enhancement near or sub-barrier 

due to lower Coulomb barrier and 

Soft Dipole Mode

•Lowering above barrier due to 

breakup of nucleus into „core‟ and 

separated „halo nucleons‟ 

Experimental contradictions

•Enhancement : 11Be (Munich)

: 6He (Dubna)

•Lowering : 11Be (RIKEN)

: 6He (Kolata et. al.)
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Attempt at 11Li + 70Zn fusion

• Three irradiations were done, two at 17.5 MeV and one at 16.5 
MeV.

• Average on-target beam intensities were 680 (2005) and 740 
particles/s (2006).

• Detection of EVR‟s, even with radiochemical techniques, is 
very difficult.

• Available beams of 11Li are not sufficiently intense to do 
fusion studies.
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Thank you
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