Role of nanoporosity on metal binding properties of wool powders

Radhika Naik¹, Guiqing Wen², M.S. Dharmaprakash¹, Sabrina Hureau¹, Akira. Uedono³,

Peter. G. Cookson² and Suzanne. V. Smith¹

¹Centre for Anti-matter Matters Studies, ANSTO, Menai, NSW 2234. ²Institute for Technology Research and Innovation, Deakin University, Geelong, VIC 3217. ³Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305–8573, Japan

The present study investigates the role of nanoporosity in wool powders on their metal binding properties. Various wool powder forms were produced by milling merino wool, and exposing them to various transition metal ions over a range of pH. Positron annihilation lifetime spectroscopy (PALS) analysis was used to investigate changes in nanoporosity on processing and after exposure to metal ion.

Australian Government

Role of nanoporosity in metal binding properties of wool powders

Dr. Radhika Naik

radhika.naik@ansto.gov.au

Guiqing Wen, M.S. Dharmaprakash, Sabrina Hureau, Akira. Uedono, Peter. G. Cookson and Suzanne. V. Smith

WESTERN AUSTRALIA

 筑波大学 University of Tsukuba

Structure of wool

Source: http://www.csiro.au/files/files/p9ti.pdf

➢Australian merino wool

• Fibre diameter 17-25 µm

- Defined as a biological composite
 - Chemically and physically heterogeneous
 - Complex internal cortex and external cuticle
 - ~90% fibre is cortex

Source: http://www.csiro.au/files/files/p9ti.pdf

Production of wool samples

(20.42µm mean diameter)

(~ 500 µm in length)

Grinding

(~150 µm in length)

(mean particle size: 4.6 µm)

Particle size = Median of volume based particle size distribution

Air-jet milling

Chemical treatment

dichloroisocyanuric acid (sodium salt) : 4% pH 4-4.5, 50 minutes, room temp.

-- Powder Technology 193 (2009) 200-207

- ➢ Co²⁺, Cu²⁺, Cd²⁺
- ≻ Effect of pH
- ≻ Rate of uptake
- Loading capacity
- ➢ Radiotracer

- SEM (Scanning elelctron microprobe)
 >50nm (macropore)
 BET (Brunauer, Emmett, Teller) gas absorption
 10-50nm (mesopore)
 PALS (Positron annihilation lifetime spectroscopy)
 - 0.1-10nm (micropore)

Metal binding: Experimental conditions

> ⁵⁷Co²⁺/Co²⁺, ⁶⁴Cu²⁺/Cu²⁺, ¹⁰⁹Cd²⁺/Cd²⁺

▶ pH: 3 to 9

≻ Temperature: 23°C

 $> [M^{2+}] = 10^{-3}$ to $10^{-6}M$

Metal binding: Experimental procedure

Metal Binding: Effect of processing and pH

[M²⁺] = 10⁻⁴M; powder 10 mg; Temp.23°C; Total Vol: 1.0 mL; centrifuge; 5000 rpm; n=12

Metal binding affinity

[M²⁺] = 10⁻⁴M; powder 10 mg; Temp.23°C; Total Vol: 1.0 mL; centrifuge; 5000 rpm; n=12

powder 10 mg; Temp.23°C; Total Vol: 1.0 mL; centrifuge; 5000 rpm

Ginsto Nuclear-based science benefiting all Australians

- > Rate of uptake
- Loading capacity
- Radiotracer

- BET (Brunauer, Emmett, Teller) gas absorption 10-50nm (mesopore)
- > PALS (Positron annihilation lifetime spectroscopy)
- 0.1-10nm (micropore)

THE UNIVERSITY OF Western Australia (Positron annihilation lifetime spectroscopy)

PALS

- Positron lifetime (τ) is a function of the electron density in the material
- Longer lifetime indicates larger pore volume

- Positronium (Ps):
 para-Ps (singlet, short-lived)
 ortho-Ps (triplet, longer-lived)
- Probability of formation p:o is 1:3

Porosity: Effect of processing

Porosity: Effect of processing

Wool sample	Pore size (nm)
W1	0.517
W4	0.521

- PALS shows no change in nanoporosity.
- BET shows no change in surface area.

$$\frac{1}{\tau(r)} = \lambda(r) = \frac{1}{4} (\lambda_p + 3\lambda_o) \left[1 - \frac{r - \Delta R}{r} + \frac{1}{2\pi} \sin\left(\frac{2\pi \cdot (r - \Delta R)}{r}\right) \right]$$

Basic protein structure appears to be conserved

Metal binding: Effect of porosity

> Wool samples saturated with Co²⁺ (~0.4M)
> Ps is formed, counts represent annihilation of all 3 components
> Decrease in counts reflects change in number of open pores

Metal binding: Effect of porosity

Proportion of open nanopores decreases dramatically on saturation with Co²⁺

➢ Some of the Co²⁺ gets trapped into nanopores in protein structure

Metal binding: Effect of porosity

Conclusion

Metal binding

- varies significantly with pH.
- depends slightly on processing and type of metal ion; exception: Co.
- loading capacity higher (3 to 9x) than commercial resins.

> PALS

- Basic protein structure and porosity independent of sample processing.
- Some metal ions trapped into nanopores.

➢ Use of radiotracers allowed rapid, sensitive and high-throughput analysis.

Potential application in removal of metal ions from waste streams.

Acknowledgements

Nuclear Probes, ANSTO:

- ➢ Dr. Suzanne Smith
- Dr. Dharmaprakash
- Sabrina Hureau

Ansto

Deakin University:

- Guiqing Wen
- Prof. Xungai Wang
- Dr. Peter Cookson

University of WA:

Prof. Jim Williams
Paul Guagliardo
Dr. Tony Sergeant

THE UNIVERSITY OF WESTERN AUSTRALIA

University of Tsukuba:

- Prof. Akira Uedono
- J. Suzuki
- H. YoshinagaG. Mizunaga

Australian Institute of Nuclear

Science and Engineering (AINSE)

Centre for Antimatter Matter Studies (CAMS)

